The Clubber's Guide to
Rapid Application Development with

GNOME and Python

Davyd Madel ey
GNOME Project

A Little Bit About Me

e Been using GNU/Linux and GNOME for along
while now
e Current GNOME Applets Maintainer
* One of the newer maintainers
— Done two release cycles now
— Experienced enough to know what I'm doing
- New enough to still related to people outside the
project
e | really like Python, it was the first Open Source
language | learnt (I didn't even know C!)

About GLIb and GTK+

e Object-orientated AL

e Libraries are writtenin C ﬁﬂ

e Platform independent N

e | otsof useful data structures are
avallable to us

e Helps programmer with memory
management

http://www.gtk.org/

About Python

e Object-orientated

e Can interface with
libraries written in C

e Platform independent

* |[mplements lots of useful
data structures for us

e Built In memory
management

http://www.python.org/

PYyGTK

e [mplements all of the GTK+ Widgets

* Does not implement GL1b structures (blessing and
acurse)

e Almost as fast as an application written in C (we
benefit from GTK+ being written in C)

e |ndistinguishable from a GTK+ app written in C

e L GPL licensed (like GTK+)

e Part of the official GNOME “Bindings’ release

 There are currently no PyGTK applications in
“Desktop”... yet.

http://www.pygtk.org/

Programming GTK+

e Usesa“main loop’
— Don't ever block the main loop!

e Asynchronous callbacks - “signals’
e Widgets are laid out using “box packing”
— libglade assists in language independent |ayout

e Everything isa GObject (except some simple data
structures)

e Threaded programming is possible, and sometimes
required, however be aware, not all libraries are
threadsafe!

A PyGTK Program

W0l o U R

#! fusr/bin/python
import gtk

def do_exit (window):
gtk.main_quit ()

window = gtk.Window ()
label = gtk.Label {"Hello World")

window. add (label)

window.connect ("destroy", do_exit)

window. show all [}

gtk.main ()

this is a signal handler
- we want to stop the main loop

create a "Window" widget
create a "Label" widget

pack the Label in the Window

handle the "destroy” signal with the
do_exit() call

put all widgets in the tree into the
show state

start the main loop

Hello World

Adding More Signals

#! fusr/bin/python
import gtk

def do exit (window):
gtk.main_quit ()

def do_click (button):
gtk. gdk. beep ()

window = gtk.Window ()

beep at the user

button = gtk.Button (stock=gtk.STOCK YES) # create a "Button" from stock

window. add {(button)

button.connect ("clicked", do_click]

window. connect ("destroy", do_exit)

window. show all ()

gtk.main ()

handle the "clicked" signal with the
do_click() call

handle the "destroy" signal with the
do exit() call

More on Signals

e Signalsfor everything!
— All GODbjects emit signals, not just GTK+ widgets
— Signals are inherited from ancestor classes
- Examples are “notify”, “clicked”, “focus-in”, “change-
background”, “activate’, “toggled”, “destroy”
e Full list of signals available for a GObject
(widgets are GODbjects too) available in the API
documentation.

e API gives prototype required for callback function

— def callback(entry, delete_type, count, user_paraml, ...)

What Is this user paraml thing?

e Commonly referred to as ssimply “user _data”

e |[tisapointer to some data structure (traditionally
a struct) that will be useful inside the callback.

e Of course, thisis Python, so we can pass whatever
we likel!!

e Probably the most useful thing to passisaclass
containing the running program state (rather then

make this global).
- we don't aways need thisin Python, as you'll see later

Using libglade

 |ibgladeisan XML format for defining GTK+
Interfaces.

e [tisasoalibrary for reading that XML format
and allowing those interfaces to be used in actual
applications.

* Thesefiles can be produced in Glade, or recently
In Gazpacho (a PyGTK app)

 No more clunky interface code required! Plus,
now people can come along and edit/fix your
Interfaces with ease

Using libglade :: an example

#! fusr/bin/python

w0 =) 5 UA B L B

import gtk
import gtk. glade # libglade support

def do_exit (window):

gtk.main_quit ()

def do _click (button, user data):

print user_data
entry.set_text (button.get label ())

xml = gtk.glade, XML ('libglade.glade', Monz, None) # load glade file

window = xml.get widget ('window') # get widgets from Glade

buttonl = xml.get widget ('buttonl')

buttonZ = xml.get _widget ('buttonz')

button3 = xml.get widget ('button3')

entry = xml.get widget ('entry')

buttonl. connect ("clicked", do click, "buttonl") # connect signals as before
button2. connect {"clicked", do click, "button2") # however specify a user data
button3. connect ("clicked", do click, "button3") # field to be passed to the

callback

window. connect (“destroy", do exit)

window, show all ()

gtk.main ()

i' l

= [T Jwindow

= gvbn}:l

= aaahbuttonbox1
k| buttonl
k| button?2
k| button3
A labell

abl [

Using libglade :: signal autoconnection

e signal autoconnection worksin Python!

Wold =l Sh U b LRI

— doesn't work so great in C
— you can choose If you want to use it

#! jusr/bin/python

import gtk
import gtk.glade
class Signals: # callbacks class
def do_exit (self, window):
gtk.main_quit ()

def do click (self, button):
entry. set_text (button.get_label ())

xml = gtk.glade. XML ('libglade2.glade', None, None)

window = xml.get widget ('window')
entry = xml.get widget ('entry')

#ml.signal_autoconnect (Signals (})
window. show all ()

gtk.main ()

' Widget | Packing | Common | Signals (15,

Signal Handler

clicked ________doclick

4
Signal: clicked
Handler: do_click
Object:

After; Mo

Add Update || Delete Clear

Even More Libraries

e libxml2, libxslt
e PyGTK

- GTK, GDK, ATK, pango, libglade
e gnome-python

— bindings for lots of useful GNOME libraries
— libgnome, GConf, GNOME-VFS, Bonobo

e nautilus-python, pyphany, ...

e GStreamer
- Platform and Desktop independent multimedia
framework

and many, many more...

A GConf Example

e GConf Is GNOME's asynchronous configuration

system.

— the powerhouse behind those instant apply preferences

— We can register our interest in certain GConf Keys and
get callbacks when they change

- thisis exactly the same as events from widgets or other
GObjects.

— Gceonf Is nothing like the Windows Registry. The only
thingsis has in common isthat it has atree structure, it
can store preferences, and an application exists to make
changesto it by hand.

A GConf Example

1 #!/usr/bin/python

2

3 import gtk

4 dimport gtk glade

5 dimport gconf

G

7 class GConfExample:

8 # signals

9 def do_exit (self, window):

16 gtk.main_quit ()

11 def new_background (self, client, cnxn_id, entry, user_data)
12 image = client.get string |

13 " /desktop/gnome/background /picture filename")
14 pixbuf = gtk. gdk.pixbuf new from file at size (image, 308, 308)
15 self.entry. set_text (image)

16 self. image. set from pixbuf (pixbuf)

17

18 # initilisation

19 def _init__ (self):

20 xmlL = gtk.glade.¥ML ('gconf-example.glade', None, None)
21 client = gconf.client get default ()

22

23 self.image = xml.get_widget ('preview image')

24 self.entry = xml.get widget ('image name')

25

26 xml.signal_autoconnect (self)

27 client.add dir ("/desktop/gnome/background",

28 gconf. CLIENT PRELOAD NOMNE)

29 client.notify add ("/desktop/gnome/background/picture filename",
30 self. new_background)

3l

32 self.new background (client, MNone, None, None)

33 xml. get_widget ('window').show all ()

34

35 if name == "'_ main__ ":

36 GConfExample ()

37 gtk.main ()

In Conclusion

* The object-orientated nature of GTK+ adapts
beautifully to Python.

e [tisvery easy to write quick GUI applications
using tools provided by the GNOME Platform.

* Thesetoolsexist today, and are proven time and
time again:
- GTK+, Python, PyGTK, libxml and Glade, as well as

the GNOME libraries: GConf, GNOME-VFS, etc...

e Everything you learn writing GTK+ on Python
adapts to most other languages and Platforms,
Including Java, C, C++ and C#.

Would You Like to Know More?

e PyGTK Tutorial

- http://www.pygtk.org/tutorial .html
e PyGTK API Reference

— http://lwww.pygtk.org/pygtk2reference/
 The Official GNOME2 Developer's Guide gEFEES

GNOME 2

EEEEEEEEE 'S GUIDE

- Matthias Warkus, No Starch Press

- Avallable from Boffins in Perth and Amazon
e GTK+ Tutorials and Documentation

— http://devel oper.gnome.org/doc/tutorial s/

— http://devel oper.gnome.org/doc/API/

FIn ;)

Questions?

http://www.davyd.id.au/articles.shtml
davyd@madeley.id.au

