
The Clubber's Guide to

Rapid Application Development with 

GNOME and Python
Davyd Madeley

GNOME Project



A Little Bit About Me

● Been using GNU/Linux and GNOME for a long 
while now

● Current GNOME Applets Maintainer
● One of the newer maintainers

– Done two release cycles now
– Experienced enough to know what I'm doing
– New enough to still related to people outside the 

project
● I really like Python, it was the first Open Source 

language I learnt (I didn't even know C!)



About GLib and GTK+

● Object-orientated
● Libraries are written in C
● Platform independent
● Lots of useful data structures are 

available to us
● Helps programmer with memory 

management

http://www.gtk.org/



About Python

● Object-orientated
● Can interface with 

libraries written in C
● Platform independent
● Implements lots of useful 

data structures for us
● Built in memory 

management

http://www.python.org/



PyGTK
● Implements all of the GTK+ Widgets
● Does not implement GLib structures (blessing and 

a curse)
● Almost as fast as an application written in C (we 

benefit from GTK+ being written in C)
● Indistinguishable from a GTK+ app written in C
● LGPL licensed (like GTK+)
● Part of the official GNOME “Bindings” release
● There are currently no PyGTK applications in 

“Desktop”... yet.

http://www.pygtk.org/



Programming GTK+

● Uses a “main loop”
– Don't ever block the main loop!

● Asynchronous callbacks - “signals”
● Widgets are laid out using “box packing”

– libglade assists in language independent layout
● Everything is a GObject (except some simple data 

structures)
● Threaded programming is possible, and sometimes 

required, however be aware, not all libraries are 
threadsafe!



A PyGTK Program



Adding More Signals



More on Signals

● Signals for everything!
– All GObjects emit signals, not just GTK+ widgets
– Signals are inherited from ancestor classes
– Examples are “notify”, “clicked”, “focus-in”, “change-

background”, “activate”, “toggled”, “destroy”
● Full list of signals available for a GObject 

(widgets are GObjects too) available in the API 
documentation.

● API gives prototype required for callback function
– def callback(entry, delete_type, count, user_param1, ...)



What is this user_param1 thing?

● Commonly referred to as simply “user_data”
● It is a pointer to some data structure (traditionally 

a struct) that will be useful inside the callback.
● Of course, this is Python, so we can pass whatever 

we like!!
● Probably the most useful thing to pass is a class 

containing the running program state (rather then 
make this global).
– we don't always need this in Python, as you'll see later



Using libglade

● libglade is an XML format for defining GTK+ 
interfaces.

● It is also a library for reading that XML format 
and allowing those interfaces to be used in actual 
applications.

● These files can be produced in Glade, or recently 
in Gazpacho (a PyGTK app)

● No more clunky interface code required! Plus, 
now people can come along and edit/fix your 
interfaces with ease



Using libglade :: an example



Using libglade :: signal autoconnection

● signal autoconnection works in Python!
– doesn't work so great in C
– you can choose if you want to use it



Even More Libraries
● libxml2, libxslt
● PyGTK

– GTK, GDK, ATK, pango, libglade
● gnome-python

– bindings for lots of useful GNOME libraries
– libgnome, GConf, GNOME-VFS, Bonobo

● nautilus-python, pyphany, ...
● GStreamer

– Platform and Desktop independent multimedia 
framework

and many, many more...



A GConf Example
● GConf is GNOME's asynchronous configuration 

system.
– the powerhouse behind those instant apply preferences
– We can register our interest in certain GConf Keys and 

get callbacks when they change
– this is exactly the same as events from widgets or other 

GObjects.
– Gconf is nothing like the Windows Registry. The only 

things is has in common is that it has a tree structure, it 
can store preferences, and an application exists to make 
changes to it by hand.



A GConf Example



In Conclusion
● The object-orientated nature of GTK+ adapts 

beautifully to Python.
● It is very easy to write quick GUI applications 

using tools provided by the GNOME Platform.
● These tools exist today, and are proven time and 

time again:
– GTK+, Python, PyGTK, libxml and Glade, as well as 

the GNOME libraries: GConf, GNOME-VFS, etc...
● Everything you learn writing GTK+ on Python 

adapts to most other languages and Platforms, 
including Java, C, C++ and C#.



Would You Like to Know More?

● PyGTK Tutorial
– http://www.pygtk.org/tutorial.html

● PyGTK API Reference
– http://www.pygtk.org/pygtk2reference/

● The Official GNOME2 Developer's Guide
– Matthias Warkus, No Starch Press
– Available from Boffins in Perth and Amazon

● GTK+ Tutorials and Documentation
– http://developer.gnome.org/doc/tutorials/
– http://developer.gnome.org/doc/API/



Fin ;)
Questions?

http://www.davyd.id.au/articles.shtml
davyd@madeley.id.au


