
Software Archery:
hitting the bull’s-eye with GNU Arch

Cameron Patrick

Perth Linux Users’ Group
March 2005

Free software revision control

● Keeping your code organised
● Allowing easy access to past versions
● Coordinating changes between developers
● Allows working in different ‘branches’

– and merging between them

● So many revision control systems to choose
from these days.

CVS

● Oldest and most popular revision control
system for free software.

● Technical problems: doesn’t track renames,
symbolic links, file permissions, has issues
with binary files.

● Social problems: only core developers can use
CVS, everyone else is left on their own.
Branching and merging is tricky.

Simple revision control

● cp -r myproject myproject.backup

● Every time you make a major change to your
software, take a backup copy and name it
consistently: e.g. v1, v2, v3, v4, ...

● This is the mental model used by Subversion:
every time you commit, the repository-wide
version number increases.

● Fine for a centralised system, but what if you
want to send your changes to someone else?

Simple revision control II

● diff -urN myproject.orig myproject

● Keep a bunch of diffs lying around for each
interesting change you make, and you can
build the latest version from an older version
and some patches.

● This is the mental model used by Arch.

Changesets

● Diff and patch have some limitations: e.g. they
don’t handle file renames or binary files.

● Arch uses a ‘changeset’ instead: a bunch of
patch files and some meta-data to handle
things that patch can’t, all wrapped up in a
tar.gz file.

Renames and logical file IDs

● When a file is added to an Arch project, it’s
given a logical file identity.

● Inside a changeset we record a list of file
names and their corresponding IDs.

● This means that if you have a file ‘foo.c’ but
I’ve renamed it to ‘silly_foo.c’, we can still
exchange Arch changesets.

Turning it into a revision
control system

● Tar up the initial state of your project and
keep it in a directory called base-0.

● Put changesets in numbered directories:
patch-1, patch-2, patch-3, etc.

● We’re now most of the way to having an Arch
archive.

Aside: signed archives

● Every changeset is stored in a separate file
and never changes once it’s been written.

● So it’s trivial to store a GPG signature next to
each changeset. (A signed Arch archive.)

● This means that if your server is
compromised, you will be able to easily see if
your code has been tampered with.
– c.f. break-in at freedesktop.org not long ago

Distributed revision control:
the Arch namespace

● Give each changeset a globally unique name
– e.g.: cp@chem.com.au--2005/

hibernate--debian--0--patch-5

● Keep track of which changesets have already
been applied in each tree

● Now we can automatically merge changes
made by someone else, in a completely
different Arch archive
– apply the changesets that we don’t already have

Arch development:
history and future

● Arch was original implemented as a shell
script known as larch. Don’t use it!

● Rewritten in C as tla (Tom Lord’s Arch)
– tla 1.x is the production version
– tla 2.0 is an ambitious rewrite, just begun

● Forked by Canonical (the folks behind
Ubuntu) as bazaar or baz
– Making more aggressive user interface changes

and testing some of the new ideas for tla 2.0

Some reasons why clever
merging is cool

● Hacking on someone else’s project
– making your own changes in your own archive
– catching up with their changes as necessary
– and they can easily merge some or all of your

changes

● Working off-line on a laptop
– committing to an archive stored on your laptop
– push changes back to your main archive when

you’re back at home

Sharing your code with the
world

● No special “arch server” is needed.
– Arch doesn’t even need to be installed on the

server machine.
– Your choice of SSH/SFTP, HTTP / WebDAV, or

straight ftp.

● Usual combination is SFTP for committing
and HTTP for read access

● ‘tla archive-mirror’ command to copy new
revisions from your archive to a remote server

Getting started with arch

● Download Bazaar from
http://bazaar.canonical.com/
– Debian/Ubuntu packages are available

● Then head over to wiki.gnuarch.org
– read the “quick introduction” and/or “learning

Arch for CVS users”

● Maybe join the gnu-arch-users mailing list

Demonstration

“Arch sucks, what else is
there?”

● Lots of free distributed revision control
systems to choose from.
– Arch is the most popular, but that doesn’t

necessarily mean it’s the best for you.

● Darcs
● Monotone
● Quilt (not really a revision control system)
● Subversion (not really distributed)
● Bazaar-NG (still in very early development)

Darcs (David’s Advanced
Revision Control System)

● Amazingly simple to learn and become
productive with
– Though some operations which are simple in arch

and cvs are harder in Darcs

● Scalability issues with
– large projects
– lots of branches

● One to watch: rapidly gaining momentum and
catching up to Arch

Questions?

