Software Archery:
hitting the bull’'s-eye with GNU Arch

Cameron Patrick

Perth Linux Users’ Group
March 2005



Free software revision control

e Keeping your code organised
* Allowing easy access to past versions
* Coordinating changes between developers

* Allows working in different ‘branches’
- and merging between them

* So many revision control systems to choose
from these days.



CVS

* Oldest and most popular revision control
system for free software.

* Technical problems: doesn’t track renames,
symbolic links, file permissions, has issues
with binary files.

e Social problems: only core developers can use
CVS, everyone else is left on their own.
Branching and merging is tricky.



Simple revision control

 Cp —r myproject myproject.backup

* Every time you make a major change to your
software, take a backup copy and name it
consistently: e.g. vi, v2, v3, v4, ...

* This is the mental model used by Subversion:
every time you commit, the repository-wide
version number increases.

* Fine for a centralised system, but what if you
want to send your changes to someone else?



Simple revision control II

e diff -urN myproject.oriqg myproject

* Keep a bunch of diffs lying around for each
interesting change you make, and you can
build the latest version from an older version
and some patches.

* This is the mental model used by Arch.



Changesets

e Diff and patch have some limitations: e.g. they
don’t handle file renames or binary files.

* Arch uses a ‘changeset’ instead: a bunch of
patch files and some meta-data to handle
things that patch can’t, all wrapped up in a
tar.gz file.



Renames and logical file IDs

* When a file is added to an Arch project, it’s
given a logical file identity.

* Inside a changeset we record a list of file
names and their corresponding IDs.

* This means that if you have a file “foo.c’ but
I've renamed it to ‘silly _foo.c’, we can still
exchange Arch changesets.



Turning it into a revision
control system

e Tar up the initial state of your project and
keep it in a directory called base-0.

* Put changesets in numbered directories:
patch-1, patch-2, patch-3, etc.

* We’re now most of the way to having an Arch
archive.



Aside: signed archives

* Every changeset is stored in a separate file
and never changes once it’s been written.

e So it’s trivial to store a GPG signature next to
each changeset. (A signed Arch archive.)

* This means that if your server is
compromised, you will be able to easily see if

your code has been tampered with.
- c.t. break-in at freedesktop.org not long ago



Distributed revision control:
the Arch namespace

* Give each changeset a globally unique name
- e.g.: cp@chem.com.au--2005/
hibernate--debian--0--patch-5

* Keep track of which changesets have already
been applied in each tree

* Now we can automatically merge changes
made by someone else, in a completely

different Arch archive
- apply the changesets that we don’t already have



Arch development:
history and future

e Arch was original implemented as a shell
script known as 1arch. Don’t use it!

e Rewritten in C as t1a (Tom Lord’s Arch)

- tla 1.x is the production version
- tla 2.0 is an ambitious rewrite, just begun

* Forked by Canonical (the folks behind
Ubuntu) as bazaar or baz

- Making more aggressive user interface changes
and testing some of the new ideas for tla 2.0



Some reasons why clever
merging is cool

* Hacking on someone else’s project
- making your own changes in your own archive
- catching up with their changes as necessary
- and they can easily merge some or all of your
changes

 Working off-line on a laptop
- committing to an archive stored on your laptop
- push changes back to your main archive when
you're back at home



Sharing your code with the
world

* No special “arch server” is needed.
— Arch doesn’t even need to be installed on the
server machine.

— Your choice of SSH/SFTP, HTTP / WebDAV, or
straight ftp.

e Usual combination is SFTP for committing
and HTTP for read access

* ‘tla archive-mirror’ command to copy new
revisions from your archive to a remote server



Getting started with arch

e Download Bazaar from

http://bazaar.canonical.com/
- Debian/Ubuntu packages are available

* Then head over to wiki.gnuarch.org
- read the “quick introduction” and/or “learning
Arch for CVS users”

* Maybe join the gnu-arch-users mailing list



Demonstration



“Arch sucks, what else iIs
there?”

e ] ots of free distributed revision control

systems to choose from.
— Arch is the most popular, but that doesn’t
necessarily mean it’s the best for you.

* Darcs

* Monotone

* Quilt (not really a revision control system)
* Subversion (not really distributed)

* Bazaar-NG (still in very early development)



Darcs (David’s Advanced
Revision Control System)

 Amazingly simple to learn and become

productive with
- Though some operations which are simple in arch
and cvs are harder in Darcs

e Scalability issues with
- large projects
—- lots of branches

* One to watch: rapidly gaining momentum and
catching up to Arch



Questions?



