Shell Scripting

How, why, and what not to do

Cameron Patrick

PLUG Seminar, September 2004

Why write shell scripts?

Number one reason:
Laziness

* Let computers do repetitive tasks
rather than humans.

Things the shell is good at

* Automating routine tasks

* Calling other programmes

* Manipulating files and directories
* Simple text manipulation

* But not :
- humerical computation

- writing network servers
- anything graphical

How It works

* You put your shell commands in a file.

* Make sure the operating system knows
how to execute it.

- Starts with a “#!” line

- Chmod it to be executable
* Away you go!

Example

simple.sh:
#! /bin/sh
this is a comment
ls -1
echo “Hello world”

$ chmod a+x simple.sh
$ 1s -1 simple.sh

-rwxr-xr-x 1 cameron cameron 56 2004-09-14 13:28 simple.sh*

$./simple.sh

Shell script concepts

* A line starting with a "#"” is a comment,
ignored by the shell

* Pretty much anything else is treated as
the name of a programme to run,
followed by arguments to give it

- e.g. "Is -l simple.sh” runs the “ls”
command with “-|" and “simple.sh” as
arguments

* Some things are treated specially
- variables, quotes, “globbing”, ...

Globbing

* You will almost certainly have seen this
before.

e "*" matches any character or
characters in a file name; *?” matches
any single character

- s0 "rm *.sh” removes all files ending in .sh

- "YIs sh?rk” matches “shark” and “shirk” but
not “shaaaaaark” or “shrk”

I EUREEDLHES

* Assign a value to a variable with
“VARIABLE_NAME=value”; e.q.
“"MY_NAME=cameron”

* Insert the value of a variable with
“$VARIABLE_NAME"

- Or "${VARIABLE_NAME}"

* Some variables are special
* Example: vars.sh

Special Variables

* "$#"” - number of command line
arguments

* "$@" - all command line arguments
(behaves slightly weirdly)

e "$?" - exit status of last command
(usually 0 means success)

* "$$"” - process ID of this shell

Environment Variables

* Some variables are inherited from the
environment when the shell starts

- The values of these variables are passed
on to any programmes the shell starts

- The “env” command lists them all

* To make sure a variable is placed in
the external environment, use
“export VARIABLE”"

Quoting

* Things in “"double” or 'single’ quotes are
treated as one argument.

- In double quotes, references to variables
are expanded

* back quotes expand to the output of
a command

- e.g. FOO=" date " sets the variable FOO
to the current date and time

Conditionals: If/Then

if some_command

then

stuff to be run 1f true
else

stuff to be run 1f false
i

Here “true” means returned an exit status of O

Conditionals: If/Then

* There is a built-in shell command called
“[" which makes shell if statements
look like normal ones.

- Allows testing for strings being equal,
numbers but less than/more than/etc, also
existence of files and directories.

- See bash “help [”

* Example: ifthen.sh

Conditionals: && and ||

* These are “and” and “or” tests.

e "a && b” runs command b if a returned
true (zero)

* “a || b” runs command b if b returned
false (non-zero)

* Example: grab-photos.sh

Others

* The shell also supports a “while” loop
and a “case” statement much like in C.

* Also a “for” loop to go through all items
in a list

* Won't be covered in any detail tonight

Pipes and redirection

* Redirection: taking the input or output
of a programme to or from a file

- “some_command >output.txt”
- “some_command <input.txt”

* Pipes: taking the output of one
programme, and connecting it to the
input of another

- “some_command | another_command”

Text manipulation:
grep, sed and awk

* Grep: print out the lines in a file that
match a particular string

* Sed: alter lines of a file according to
certain rules

* Awk: a small programming language
for processing text files; can do
anything that grep or sed can, and
more

* Examples: rotate-photos.sh (grep);
mangle.sh (sed)

Looking for files:
find and xargs

* find will recursively look for files which
match some set of criteria, and do
things to them

- e.qg. files with a certain name; or directories only; or symbolic
links; or files that haven’t been modified in the last few days; or
which have certain permissions set; or whatever

* Xargs reads a list of files on standard
input and executes a programme on
that list

* Example: xargs.sh

Functions

* Much like other programming
languages, the shell supports defining
functions, which can be called later as
if they were external commands.

* Example: mangle.sh

Miscellaneous

* Running a shell script with “sh -x
something.sh” will display every
command being executed.

- useful for debugging

- equivalent to placing “set -x" at the top of
the script

* Running a script with “sh -e” will cause
it to abort whenever a command exits
with an error
- equivalent to "set -e” inside the script

Conclusion

* I've only really scratched the surface of
what can be done by a shell script.

* Reading other people’s scripts can be
enlightening.

- Sometimes as examples of how not to do
things.

Questions?

