
Shell Scripting

How, why, and what not to do

Cameron Patrick

PLUG Seminar, September 2004



Why write shell scripts?

Number one reason:
Laziness

● Let computers do repetitive tasks 
rather than humans.



Things the shell is good at

● Automating routine tasks
● Calling other programmes
● Manipulating files and directories
● Simple text manipulation
● But not :

– numerical computation
– writing network servers
– anything graphical



How it works

● You put your shell commands in a file.
● Make sure the operating system knows 

how to execute it.
– Starts with a “#!” line
– Chmod it to be executable

● Away you go!



Example

simple.sh:
#! /bin/sh
# this is a comment
ls -l
echo “Hello world”

$ chmod a+x simple.sh

$ ls -l simple.sh
-rwxr-xr-x  1 cameron cameron 56 2004-09-14 13:28 simple.sh*

$ ./simple.sh



Shell script concepts

● A line starting with a “#” is a comment, 
ignored by the shell

● Pretty much anything else is treated as 
the name of a programme to run, 
followed by arguments to give it
– e.g. “ls -l simple.sh” runs the “ls” 

command with “-l” and “simple.sh” as 
arguments

● Some things are treated specially
– variables, quotes, “globbing”, ...



Globbing

● You will almost certainly have seen this 
before.

● “*” matches any character or 
characters in a file name; “?” matches 
any single character
– so “rm *.sh” removes all files ending in .sh
– “ls sh?rk” matches “shark” and “shirk” but 

not “shaaaaaark” or “shrk”



Shell Variables

● Assign a value to a variable with 
“VARIABLE_NAME=value”; e.g. 
“MY_NAME=cameron”

● Insert the value of a variable with 
“$VARIABLE_NAME”
– Or “${VARIABLE_NAME}”

● Some variables are special
● Example: vars.sh



Special Variables

● “$#” - number of command line 
arguments

● “$@” - all command line arguments 
(behaves slightly weirdly)

● “$?” - exit status of last command 
(usually 0 means success)

● “$$” - process ID of this shell



Environment Variables

● Some variables are inherited from the 
environment when the shell starts
– The values of these variables are passed 

on to any programmes the shell starts
– The “env” command lists them all

● To make sure a variable is placed in 
the external environment, use
“export VARIABLE”



Quoting

● Things in “double” or ‘single’ quotes are 
treated as one argument.
– In double quotes, references to variables 

are expanded
● `back quotes` expand to the output of 

a command
– e.g. FOO=“`date`” sets the variable FOO 

to the current date and time



Conditionals: If/Then

if some_command

then

        stuff to be run if true

else

        stuff to be run if false

fi

Here “true” means returned an exit status of 0



Conditionals: If/Then

● There is a built-in shell command called 
“[” which makes shell if statements 
look like normal ones.
– Allows testing for strings being equal, 

numbers but less than/more than/etc, also 
existence of files and directories.

– See bash “help [”
● Example: ifthen.sh



Conditionals: && and ||

● These are “and” and “or” tests.
● “a && b” runs command b if a returned 

true (zero)
● “a || b” runs command b if b returned 

false (non-zero)
● Example: grab-photos.sh



Others

● The shell also supports a “while” loop 
and a “case” statement much like in C.

● Also a “for” loop to go through all items 
in a list

● Won’t be covered in any detail tonight



Pipes and redirection

● Redirection: taking the input or output 
of a programme to or from a file
– “some_command >output.txt”
– “some_command <input.txt”

● Pipes: taking the output of one 
programme, and connecting it to the 
input of another
– “some_command | another_command”



Text manipulation:
grep, sed and awk

● Grep: print out the lines in a file that 
match a particular string

● Sed: alter lines of a file according to 
certain rules

● Awk: a small programming language 
for processing text files; can do 
anything that grep or sed can, and 
more

● Examples: rotate-photos.sh (grep); 
mangle.sh (sed)



Looking for files:
find and xargs

● find will recursively look for files which 
match some set of criteria, and do 
things to them
– e.g. files with a certain name; or directories only; or symbolic 

links; or files that haven’t been modified in the last few days; or 
which have certain permissions set; or whatever

● xargs reads a list of files on standard 
input and executes a programme on 
that list

● Example: xargs.sh



Functions

● Much like other programming 
languages, the shell supports defining 
functions, which can be called later as 
if they were external commands.

● Example: mangle.sh



Miscellaneous

● Running a shell script with “sh -x 
something.sh” will display every 
command being executed.
– useful for debugging
– equivalent to placing “set -x” at the top of 

the script
● Running a script with “sh -e” will cause 

it to abort whenever a command exits 
with an error
– equivalent to “set -e” inside the script



Conclusion

● I’ve only really scratched the surface of 
what can be done by a shell script.

● Reading other people’s scripts can be 
enlightening.
– Sometimes as examples of how not to do 

things.



Questions?


